Joint analysis of eye movements and EEGs using coupled hidden semi-Markov models to identify and characterize reading strategies

Jean-Baptiste Durand ¹ Anne Guérin-Dugué ² Sophie Achard ¹ Benoit Lemaire ³

¹Mistis, Inria / Laboratoire Jean Kuntzmann

²Vibs, Gipsa-lab

³LPNC

Issued from Brice Olivier's PhD Defense (June 2019)

Reading strategies & segmentation

- Aim: identifying strategies within text reading trials and characterizing these with EEG patterns.
- Carver (1990) identified 5 reading strategies
- Reading strategies were defined in controlled settings using reading rates
- **Issue**: how to identify strategies in free reading trials from eye-tracker and EEG data?
- Proficient readers are not faster but switch more efficiently between strategies (can we check this?)

5 reading strategies by Carver (1990)

Eye movements & eye-tracking

During reading, eyes move across words and can be tracked with an eye-tracker

- Fixation (circles): immobilization of visual gaze during few ms.
- Saccade (lines): brief movement of the eye between two fixations.
- Scanpath: series of fixations and saccades recorded during a given task.

- Ecological context: information search tasks involving both semantic information gathering and decision making processes (Frey et al., 2013)
- Simulate press review task through binary decision:

Is the text related to the topic or not ?

- positive decision: target words
- negative decision: incongruent words
- Experimental settings:
 - 15 participants
 - 180 texts per participant
 - Target topics are nominal phrases. e.g. "modern art"
 - 60 Highly- / 60 Moderately- / 60 Un-related texts to the topic
- Data sets: eye movements, electroencephalograms (EEGs)

Scanpath examples - HR / UR texts

"International tribunal" (Highly related)

"Iraq conflict" (Unrelated)

- Based on eye-movement features, how to segment scanpaths into interpretable segments (reading strategies) that reflect changes in cognitive processes in information acquisition and processing?
- How can we use covariates (text types, EEGs) to interpret and validate segmentations based on eye movements?
- How can we **model both eye movements and EEGs** into a coherent framework to enhance segmentation?
- Segmentation of temporal data based on statistical tools (Simola et al., 2008)

Outline

- 1. Hidden (semi-)Markov Models
- 2. HSMM estimation on scanpaths
- 3. A posteriori analysis of restored states from covariates (text, EEGs)
- 4. Joint modeling of eye movements and EEGs
- 5. Contributions & Perspectives

Hidden (semi-)Markov Models

Hidden Markov Model (HMM)

 $\forall i, j \in \mathcal{S}, \quad A_{ii} = P(S_t = j | S_{t-1} = i)$

7

Hidden Markov Model (HMM)

Say $\theta = {\pi_j, A_{ij}, b_j(v_g)}$ are unknown, **S** hidden, and I just observed **O**:

 How do I estimate the model parameters θ̂? (MLE)

- How do I compute the most likely state sequence $P(S_{1:T}|O_{1:T}, \hat{\theta})$? (Viterbi)
- How do I find Card(S)? (BIC)
- How do I identify S? (interpretation)

Hidden semi-Markov Model (HSMM – Yu, 2010)

HSMM estimation on scanpaths

Output process construction

Observed Process: "Readmode"

- Categorical variable with 5 levels from long regression to long progression, i.e. bounded number of words crossed in one saccade ∈ V = {< −1, −1, 0, 1, > 1}
- Invariant by changes of screen layout.
- Time index: fixations

Latent Process

- **Reading strategies:** "hidden", to be recovered through different patterns of Readmode frequencies.
- **Number of reading strategies:** unknown, to be determined by information criteria.

Model covariates

• Fixation duration, Saccade amplitude, Text properties, EEGs

Estimated model parameters

Each reading strategy is characterized by: a **readmode pattern**, a **sojourn distribution**, **probabilities to switch** to other reading strategies and an **initial probability.**

Scanpath restoration - HR / UR texts

"International tribunal" (Highly re- "Iraq conflict" (Unrelated) lated)

A posteriori analysis of restored states from covariates (text, EEGs)

Text covariate – Trigger word detection

"International tribunal" (Highly related +)

- Do transitions occur around keywords more often?
- Automatic detection of trigger words w.r.t. topics
- Using vector-space word representations and distances
- In UR texts, inclusion of log frequency factors for specificity

Text covariate – Distance between target words and times of transition

- Reading strategy transitions occurs around keywords when exiting states Normal Reading and Information search.
- The effect is less salient when exiting Speed Reading, except for UR texts.

EEG analysis - Bands, activities, tasks

• **Issue:** In free reading tasks, EEG patterns are not synchronized in trials. EEGs kind of resynchronized by strategy changes.

- **MODWT**: Highlights patterns that might not be visible on time domain.
- Scales of decomposition associated with characterized brain waves in the literature: β to δ (e.g., memory performance and encoding; Neuper and Klimesch, 2006).
- Same principle for locality (e.g., left hemispheric lateralization for verbal working memory, right hemisphere lateralization for spatial working memory; Nagel *et al.*, 2013).

Small-world network analysis (Achard et al., 2006)

- 1. Confidence intervals on (MODWT) wavelet correlations and **hypothesis testing**
- 2. Global thresholding into adjacency matrix
- 3. Graph and associated metrics
 - mean degree
 - inverse mean shortest path distance = efficiency
- Particular issue:
 - Individual variability (requires further individual thresholding)

EEGs - Anatomical maps for scale θ

Normal reading - mean degree: 3.46, efficiency: 0.31

Speed reading - mean degree: 3.6, efficiency: 0.33

Information search - mean degree: 3.2, efficiency: 0.30

Slow confirmation - mean degree: 3, efficiency: 0.27

Shortcomings - Uncertainty of state sequence restoration

- Uncertainty in state restoration not accounted for (state entropy).
- Delays in switches wrt regimes in eye movements an EEGs.

Computation of Posterior probabilities of state sequence $s_t^{(k)} = \max_{\substack{s_{1:t-1}, s_{t+1:T}}} P(S_{1:t-1} = s_{1:t-1}, S_t = k, S_{t+1:T} = s_{t+1:T} | O_{1:T})$

"Economic growth" - Unrelated text

Modeling specifications

Asynchronous, heterogeneous hidden semi-Markov model (AHHSMM)

Different sampling rates

- $t \in \{1, ..., T\}$ now denotes a temporal index in ms.
- Let N_t , the number of fixations from 1 to t

Delayed State

- Let $\{S_1^{(2)}, ..., S_T^{(2)}\}$ a discrete latent state taking values in S and encoding the first SMC $\{S_1, ..., S_{N_T}\}$ at a higher sampling rate, plus a lag.
- We denote the lag $\{\epsilon_{N_1}, ..., \epsilon_{N_T}\}$, with $\epsilon_{N_t} \in \{1, ..., \mathcal{L}\}$ in its most general form.
- Hence we have: $S_t^{(2)} = S_{N_t \epsilon_{N_t}}, \forall t \in \llbracket \epsilon_1, \tau \rrbracket$.
- *ϵ_{Nt}* could be deterministic, random, autoregressive, dependent on channels and /
 or states (model selection)
- Estimation through adapted Expectation-Maximization algorithm (Dempster *et al.*, 1977)

Contributions

- Towards a comprehensive model to analyse heterogeneous signals with desynchronized regime switches.
- Deeper understanding and statistical characterization of reading mechanisms in press review-like tasks.

Perspectives

- Individual variability: quantification and EEG correction with mixed models.
- EEGs: strengthen result interpretation on graphs based on literature.
- Model comparison and selection : different assumptions on delays; specific properties of channels and brain waves.
- Fine-grain hierarchical modelling of reading processes (word decoding, semantic integration, etc.)

Thank you

References

- Achard, Sophie et al. (2006). "A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs". In: *Journal of Neuroscience* 26.1, pp. 63–72.
- Carver, Ronald P (1990). *Reading rate: A review of research and theory.* Academic Press.
- Dempster, A.P., N.M. Laird, and D.B. Rubin (1977). "Maximum Likelihood from Incomplete Data via the EM Algorithm, (with discussion)". In: *Journal of the Royal Statistical Society Series B* 39, pp. 1–38.
- Frey, Aline et al. (2013). "Decision-making in information seeking on texts: an eye-fixation-related potentials investigation". In: *Frontiers in systems neuroscience* 7, p. 39.

- Nagel, Bonnie J et al. (2013). "Hemispheric lateralization of verbal and spatial working memory during adolescence". In: *Brain and cognition* 82.1, pp. 58–68.
 Neuper, Christa and Wolfgang Klimesch (2006). *Event-related dynamics of brain oscillations*. Vol. 159. Elsevier.
- Simola, Jaana, Jarkko Salojärvi, and Ilpo Kojo (2008). "Using hidden Markov model to uncover processing states from eye movements in information search tasks". In: *Cognitive systems research* 9.4, pp. 237–251.

Supplementary material

- State sojourn time are by definition Geometric
- Let X ~ G(p), E[X] = 1/p, V[X] = ^{1−p}/_{p²}. Expectation and Variance linked by one single parameter p.

Model selection - RandomInit - choosing of K, L

		Normal reading	Fast Forward	Information Search	Slow Confirmation
Fixation duration (ms)		183 ± 68	170 ± 60	190 ± 70	188 ± 68
Saccade amplitude (px)		121 ± 103	150 ± 94	136 ± 103	144 ± 98
Reading speed (wpm)		382	600	436	227
Cumulated cosine*		.33 ± .28	$.33\pm.30$	$.51\pm.23$.47 ± .26
Saccade direction	Backward	.09	.09	.18	.19
	Upward	.01	.02	.04	.10
	Downward	.14	.22	.19	.19
	Forward	.71	.61	.51	.44
	Last	.05	.05	.07	.08

* Measure of cumulated gathered semantic information

Speed reading suggests to be an easy task and therefore shorter fixations - Rayner (1998), Simola et al. (2008)

Model validation - Understanding the usage

Strategies usage wrt text types

Factorial Correspondence Analysis: Stra gies and Subjects

In practise:

- strategies are used differently according to the text type,
- not all strategies are used for every trial or by every subject.

Model validation - EEGs - Information Diffusion

EEGs - Choosing the correlation threshold

