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This work has been partially supported by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01)



Event-based boundary control of networks of conservation laws

1D-Hyperbolic partial differential equations

Modeling of physical networks

Hydraulic: Saint-Venant equations for open channels [Bastin,
Coron, and d’Andréa-Novel; 2008];

Road traffic [Coclite, Garavello and Piccoli; 2005];

Data/communication: Packets flow on telecommunication
networks [D’Apice, Manzo and Piccoli; 2006].

Gas pipeline : Euler equations [Gugat, Dick and Leugering; 2011];

Electrical lines : Transmission and wave propagation
[Magnusson,Weisshaar,Tripath and Alexander; 2000];

· · ·

Event-based boundary control of these applications

To propose a framework for event-based control of hyperbolic systems.
A rigorous way to implement digitally continuous time
controllers for hyperbolic systems.

To reduce control and communication constraints.

[Bastin et al., 2008, Coclite et al., 2005, Gugat et al., 2011,
D’Andréa-Novel et al., 2010, D’Apice et al., 2006, Magnusson et al., 2000]



Event-based boundary control of networks of conservation laws

Outline

1 Networks of conservation laws
Fluid-flow modeling
ISS stability

2 Event-based control of linear hyperbolic systems
Event-based stabilization

3 Conclusion and Perspectives



Event-based boundary control of networks of conservation laws

Networks of conservation laws

Fluid-flow modeling

Fluid-flow modeling - communication networks
Compartmental representation
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Figure: Example of a compartmental network.

1 In is the set of the number of compartments, numbered from 1 to n.
2 Di ⊂ In is the index set of downstream compartments connected

directly to compartment i (i.e. those compartments receiving flow from
compartment i).

3 Ui ⊂ In is the index set of upstream compartments connected directly
to compartment i (i.e. those compartments sending flow to
compartment i).
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Networks of conservation laws

Fluid-flow modeling

Transmission lines

Transmission lines may be modeled by the following conservation laws
[D’Apice, Manzo, Piccoli; 2008]:

∂tρij(t, x) + ∂xfij(ρij(t, x)) = 0

ρij(t, x) is the density of packets;

fij(ρij(t, x)) is the flow of packets, x ∈ [0, 1], t ∈ R
+, i ∈ In, j ∈ Di.

σij
ρijρmax

ij

f(ρij)

Figure: Fundamental triangular
diagram of flow-density

fij(ρij) =

{

λijρij , if 0 ≤ ρij ≤ σij

λij(2σij − ρij), if σij ≤ ρij ≤ ρmax
ij

σij is the critical density - free flow
zone and congested zone.

λij is the average velocity of packets
traveling through the transmission line.
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Networks of conservation laws

Fluid-flow modeling

We focus on the case in which the network operates in free-flow, i.e.

fij(ρij) = λij · ρij

for 0 ≤ ρij ≤ σij .

Let us denote the flow fij(ρij) := qij .

We rewrite the conservation laws as Kinematic wave equation [Bastin,
Coron, d’Andréa-Novel; 2008]: [Bastin et al., 2008]

Linear hyperbolic equation of conservation laws.

∂tqij(t, x) + λij∂xqij(t, x) = 0
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Networks of conservation laws

Fluid-flow modeling

Servers: Buffers and routers

zi(t)+

θi(zi)

vi(t) ri(zi)

(1− wi)vi

di(t)

Figure: Compartment: buffer.

Dynamics for each buffer i ∈ In(see e.g. Congestion control in
compartmental network systems [Bastin, Guffens; 2006]): [?]

żi(t) = vi(t)− ri(zi(t))

vi is the sum of all input flows getting into the buffer;

ri is the output flow of the buffer (processing rate function) .

with vi(t) = di(t) +
∑

k 6=i
k∈Ui

qki(t, 1).
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Networks of conservation laws

Fluid-flow modeling

Control functions and dynamic boundary condition

Control functions

1 wi: To modulate the input flow vi and reject information.

2 uij : To split the flow through different lines.

żi(t) = wi(t)di(t) +
∑

k 6=i
k∈Ui

wi(t)qki(t, 1)− ri(zi(t)), wi(t) ∈ [0, 1]

Dynamic boundary condition

qij(t, 0) = uij(t)ri(zi(t))

Splitting control (routing control): uij(t) ∈ [0, 1], j ∈ Di, i ∈ In.

The output function for each output compartment i ∈ Iout is given by

ei(t) = ui(t)ri(zi(t))

with
∑

i6=j
j∈Di

uij(t) + ui(t) = 1.
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Networks of conservation laws

Fluid-flow modeling

Linearized system around an optimal free-flow equilibrium point

Coupled linear hyperbolic PDE-ODE.
{

∂ty(t, x) + Λ∂xy(t, x) = 0

Ż(t) = AZ(t) +Gyy(t, 1) +BwW (t) +Dd̃(t)

with dynamic boundary condition

y(t, 0) = GzZ(t) +BuU(t)

and initial condition

y(0, x) = y
0(x), x ∈ [0, 1]

Z(0) = Z
0
.
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Networks of conservation laws

ISS stability

Input-to-State stability ISS

The system P is Input-to-State Stable (ISS) with respect to
d̃ ∈ Cpw(R

+;Rn), if there exist ν > 0, C1 > 0 and C2 > 0 such that, for
every Z0 ∈ R

n, y0 ∈ L2([0, 1];Rm), the solution satisfies, for all t ∈ R
+,

(‖Z(t)‖2 + ‖y(t, ·)‖2L2([0,1],Rm)) ≤

C1e
−2νt(‖Z0‖2 + ‖y0‖2L2([0,1];Rm)) +C2 sup

0≤s≤t

‖d̃(s)‖2 (1)

C2 is called the asymptotic gain (A.g).
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Networks of conservation laws

ISS stability

Contributions on this framework:

Modeling of communication networks under fluid-flow and
compartmental representation;

Characterization of suitable operating points for the network;

Open-loop analysis (Lyapunov-based):
Sufficient condition for ISS - LMI formulation;
Asymptotic gain estimation;

Closed-loop analysis (Lyapunov-based):
Control synthesis to improve the performance of the network;
LMI formulation;
Control constraints.
Minimization of the Asymptotic gain;

W (t) =
[

Kz Ky

]

[

Z(t)
y(t, 1)

]

U(t) =
[

Lz Ly

]

[

Z(t)
y(t, 1)

]















C
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Networks of conservation laws

ISS stability

Numerical simulation
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Figure: Network of compartments made up of 4 buffers and 5 transmission lines.
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Networks of conservation laws

ISS stability

Exogenous input flow demand
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EBC of Lin. hyperbolic sys

Event-based stabilization

EBC of Linear hyperbolic system of conservation laws

ETM

K

C

P

tk

∂
∂t
y(t, x) + Λ ∂

∂x
y(t, x) = 0

y(t, 0) = Hy(t, 1) +Bu(t)

y(t, 1)u(t) = Ky(tk, 1)

ϕ

Contributions on this framework:

Event-triggered mechanisms (Lyapunov-based);

tk+1 = inf{t ∈ R
+|t > tk ∧ some suitable triggering condition}

ISS static event-based stabilization ϕ1;
D+V event-based stabilization ϕ2;
ISS dynamic event-based stabilization ϕ3;
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Conclusion

Conclusion and Perspectives

Modeling and dynamic boundary control of Coupled PDE-ODE.

Extension of event-based controls developed for finite-dimensional
systems to linear hyperbolic systems by means of Lyapunov techniques;

New way of sampling in time in order to implement digitally
continuous time controllers for linear hyperbolic systems;

Perspectives:

Self-triggered implementations;

Event-based boundary control of parabolic equations.
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Networks of conservation laws

Fluid-flow modeling

About my P.h.D
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Networks of conservation laws

Fluid-flow modeling
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Networks of conservation laws

Fluid-flow modeling

Thank you for your attention!
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Networks of conservation laws

Fluid-flow modeling

Theorem (Control synthesis)

Let λ = min{λij} i∈In
j∈Di

. Assume that there exist µ, γ > 0, a symmetric

positive definite matrix P ∈ R
n×n a diagonal positive matrix

Q ≥ I ∈ R
m×m, as well as control gains Kz, Ky, Lz and Ly of adequate

dimensions, such that the following matrix inequality holds:

Mc =





M1 M2 M3

⋆ M4 0
⋆ ⋆ M5



 ≤ 0

with

M1 = (A+BwKz)TP+P (A+BwKz)+2µλP+(Gz+BuLz)TQΛ(Gz+BuLz);

M2 = P (Gy + BwKy) + (Gz + BuLz)TQΛBuLy;

M3 = PD;

M4 = −e−2µQΛ + Ly
TBT

u QΛBuLy;

M5 = −γI.

Then, the closed-loop system P is ISS with respect to d̃ ∈ Cpw(R
+;Rn), and

the asymptotic gain (A.g) satisfies

A.g ≤
γ

2µλ
e
2µ
.
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Networks of conservation laws

Fluid-flow modeling

Optimization issues and control constraints

minimize
γ

2ν
e
2µ

subject to Mc ≤ 0;

‖Kzi‖ ≤
pδwi
βz

; ‖Kyi‖ ≤
(1− p)δwi

βy

; ‖Lzi‖ ≤
δuij

βz
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Networks of conservation laws

Fluid-flow modeling

NT = 8000 with ∆t = 1× 10−3.
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