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Electroencephalography (EEG)

I recording of the electrical activity on the scalp resulting from
the electrical activity of the brain

I applications:
• brain research
• diagnosis - epilepsy, sleep disorders,...

• neurofeedback - modulate its own brain activity

• brain computer interface - video games, assistance to disabled persons

I interests:

• low cost
• non-invasive
• very good temporal resolution

well capture the dynamics of brain activity
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Electroencephalography (EEG)

I recorded activity generated by
electrical source dipoles inside the
brain
simultaneous activation of colons of neurons

electrodes

source dipoles

I source signals are mixed while propagating through the brain,
skull and scalp [Nunez and Srinivasan, 2006]

I recorded signals x(t) ∈ Rn follow the mixing process:

x(t) = As(t),

• s(t) ∈ Rp, source signals
• A ∈ Rn×p, mixing matrix

gipsa-lab

Florent Bouchard, Blind source separation and EEG analysis 5/ 18



Blind source separation (BSS)

I retrieve the source signals s(t) and the mixing process A from
the observations x(t) [Comon and Jutten, 2010]

only assume that source signals are statistically independent

I use K matrices Ck containing the statistics of x(t):
I element i, j: statistical link between electrodes i and j
I in S++

n , set of symmetric positive definite (SPD) matrices

I matrices Sk containing the statistics of s(t) are diagonal
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Approximate joint diagonalization (AJD)

I Given {Ck}, find an invertible matrix B ∈ Rn×n such that
BCkB

T are as much diagonal as possible

I estimated source signals are s̃(t) = Bx(t)

I for K > 2, no closed form solution - iterative optimization algorithm

{Ck} {BCkB
T }

···
k

AJD

···
k
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Approximate joint diagonalization (AJD)

I from a geometrical point of view:

S++
nD++

n

•

•

•
•

•

•

• •
Ck

BCkB
T

•
•

I we want change the basis in order to get the matrices Ck as
“close” as possible to D++

n

we need the notion of “distance” of a matrix on S++
n to the

subset D++
n
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Approximate joint diagonalization (AJD)

S++
nD++

n

•
BCkB

T

•Λk(B)

•Λ̃k(B)

I “distance” from BCkB
T to D++

n :

• a divergence d(·, ·) on S++
n

similar to a distance, less properties

• a diagonal matrix Λk(B) in D++
n

I given d(·, ·), the natural choice for Λk(B) is [Alyani et al., 2016]

Λk(B) = argmin
Λ∈D++

n

d(BCkB
T ,Λ)

I the joint diagonalizer B is defined as

argmin
B

∑
k

wkd(BCkB
T ,Λk(B))

many choices for the divergence d(·, ·)
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Approximate joint diagonalization (AJD)

I Frobenius distance: least-squares criterion
AJD in [Cardoso and Souloumiac, 1993]

δ2
F(C,Λ) = ‖C − Λ‖2F Λ = ddiag(C)

I Kullback-Leibler divergence: from statistics and signal processing

dKL(P, S) = tr(P−1S − In)− log det(P−1S)

• left measure - log-likelihood criterion AJD in [Pham, 2000]

dlKL(C,Λ) = dKL(Λ, C) Λ = ddiag(C)

• right measure

drKL(C,Λ) = dKL(C,Λ) Λ = ddiag(C−1)−1
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Approximate joint diagonalization (AJD)

I natural Riemannian distance: geodesical distance on S++
n

[Bhatia, 2009]

δ2
R(C,Λ) =

∥∥∥log(Λ
−1/2CΛ

−1/2)
∥∥∥2

F
log(C−1Λ) = 0

I Bhattacharyya distance: closely related to the natural Riemannian
distance, numerically cheaper [Sra, 2013]

δ2
B(C,Λ) = 4 log

det((C + Λ)/2)

det(C)1/2 det(Λ)1/2
2 ddiag

(
(C + Λ)−1

)
= Λ−1

I Wasserstein distance: from optimal transport [Villani, 2008]

δ2
W(C,Λ) = tr

(
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2
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Numerical experiment

I recording of an epileptic patient - 19 electrodes, sampling rate 128Hz

I goal: retrieve the source corresponding to the 3 peak-slow
wave complexes
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Numerical experiment
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Left: waveforms of the estimated source corresponding to the peak-slow
wave complexes for all divergences considered

Right: spatial distributions of the estimated source on the scalp for all
divergences considered
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Conclusions and perspectives

I different criteria give different information → combine them

I try different combinations of divergence / target matrices

I study the theoretical properties of the criteria

I study the links between AJD and centers of mass
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Thank you for your attention !

I PhD: October 2015 - September 2018

I Publications:
• F. Bouchard, L. Korczowski, J. Malick, M. Congedo. Approximate joint diagonalization within the

Riemannian geometry framework. 24th European Signal Processing Conference (EUSIPCO-2016).

• F. Bouchard, J. Malick, M. Congedo. Approximate joint diagonalization according to the natural
Riemannian distance. 13th International Conference on Latent Variable Analysis and Signal
Separation (LVA/ICA-2017)

• F. Bouchard, P. Rodrigues, J. Malick, M. Congedo. Réduction de dimension pour la séparation
aveugle de sources. Submitted to GRETSI 2017.

• F. Bouchard, J. Malick, M. Congedo. Riemannian optimization and approximate joint
diagonalization for blind source separation. Submitted to IEEE Transactions on signal processing.
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