Statistical learning: some principles and applications

Adeline Leclercq Samson

A. Samson Grenoble, 28/11/2017

Some vocabulary in statistical learning

1. Learning a decision rule

- Prediction of an (labeled) outcome based on observed variables
- Prediction of the outcome from new observations

2. Clustering

- Creation of groups of similar individuals / objects / variables
- Research of patterns

3. Learning a model from the data

- Physical / biological models
- ▶ Estimation of the parameters, shape of the model

4. Learning associations, statistical tests

- Correlation between variables
- Interactions in a network

5. Data visualization

- Exploration of the data, outliers detection, errors
- Reduction of the dimension

Challenges in statistical learning

High dimension

- A lot of variables per individual
- Aim: learn the effect of all these variables even when the number of individuals / units remains small

Repeated measures

- Repeated trials
- ▶ Longitudinal measurements: several measures in time
- ▶ Aim: learn the variability in the process and the evolution in time

Structured data

- ► Connected objects: a function measured with high frequency
- Functional data
- ▶ Aim: learn a function (infinite dimension) and not only some parameters

A. Samson Grenoble, 28/11/2017 3 / 24

Main approaches in statistical learning

Parametric versus Non Parametric

Non parametric

- No prior knowledge of a model, of a relationship between variables
- ▶ Objectives: learn the model, the distribution of the variables, the network

Parametric

- Models with meaningful parameters: chemical interactions, physical laws, biological transformation
- ▶ Prior models: linear regression, reliability
- Objectives: numerical optimization of a criteria

Challenges

- Parsimony: high dimension but maybe few significant signals
- Optimization: new technics to optimize complex criteria/space
- Distributed calcul: scalability of the solution

A. Samson Grenoble, 28/11/2017 4 / 24

1. Decision rule, classification

- Supervised learning: class labels are provided
- Aim: learn a classifier to predict class labels of novel data
- Statistical tools
 - Logistic regression (parametric)
 - K-nearest neighbors (non-parametric)
 - Decision tree (non-parametric)

5 / 24

Decision tree

A. Samson Grenoble, 28/11/2017 6 / 24

K-nearest neighbors

Advanced personalized medicine

8 / 24

- Predict the best treatment from the knowledge of biomarkers measured at an initial clinical visit
- Logistic regression and decision tree

A. Samson Grenoble, 28/11/2017

Manufacturing industry

- ► High production costs
- Some non conformity at the end of the production process
- Large number of sensors

- Decision tree to predict early in the production process which piece is likely to be not conform
- Reduce the proportion of non conformity

A. Samson Grenoble, 28/11/2017

2. Clustering

- Unsupervised learning: no class label is given
- Aim
 - Creation of groups of similar individuals / objects / variables:
 - Understanding the structure underlying the data
- Statistical tools
 - K-means (non-parametric)
 - Mixture model (parametric)
 - ▶ Bi-clustering, Stochastic Block Model (parametric)

Consumption curves

- A curve per consumer
- Prediction of the future consumption

- ▶ Clustering and identification of profiles by mixture model of functional data
- Prediction based on these clusters

Consumption curves

- A curve per consumer
- Prediction of the future consumption

- ► Clustering and identification of profiles by mixture model of functional data
- Prediction based on these clusters

Bi-clustering

Stochastic block model

A. Samson Grenoble, 28/11/2017 14 / 24

Autonomous Vehicle

- Precision of the position
- Sequence of images

- ► Segmentation of the images by Stochastic Block Model
- Prediction of the position

3. Learning a model

Aim

- Fit the data with a model
- ▶ Regression model

Statistical tools

- Differential equations
- Point process
- Estimation of the parameters (parametric)
 - Maximum likelihood
 - Bayesian
 - Penalization with high dimension
- Estimation of the model (non-parametric)
 - ► Splines, Wavelets, Fourier

Immunotherapy

Differentiated melanoma cell
Dedifferentiated melanoma cell
Cytotoxic T-cell
TNF-alpha

Dying tumor cell

- ▶ Efficacy of the treatment
- ▶ Optimization of the treatment, in terms of dose and time to treatment

Maintenance, reliability

- Maintenance optimization
- Imperfect maintenance

- Virtual age modeling, point processes
- Optimization of the next preventive maintenance

4. Learning associations, statistical tests

Aim

- Correlation between variables.
- Learning communities and networks

Statistical tools

- Correlation tests, multiple tests
- ► Graphical models

- Genomics
 - ► Effect of the pollution on epigenetics and baby growth

- Associations tests and multiple testing
- Mediation to infer causality

- Neurosciences
 - Understanding the connexions in the brain
 - ▶ Longitudinal, functional data through EEG, MEG data

Statistical learning frameworks

Open source development frameworks available

Possible to use in industry

Take-Home message

- Core-idea of statistical learning
 - Variety of (industrial) problems
 - Variety of statistical questions
 - Variety of learning approaches
 - Machine learning: decision rule, clustering
 - Statistical learning: model learning, association/correlation
- A strategy that is effective across different disciplines
 - Health
 - Environment
 - Energy
 - Marketing
 - Manufacturing industry

A. Samson Grenoble, 28/11/2017 23 / 24

Some directions of ongoing research

- Structured data, connected objects
- Social networks, interaction graph
- High dimension
- Optimization with constraints
- Distributed computation

