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Challenges in Statistical Learning

Some vocabulary in statistical learning
1. Learning a decision rule

I Prediction of an (labeled) outcome based on observed variables
I Prediction of the outcome from new observations

2. Clustering
I Creation of groups of similar individuals / objects / variables
I Research of patterns

3. Learning a model from the data
I Physical / biological models
I Estimation of the parameters, shape of the model

4. Learning associations, statistical tests
I Correlation between variables
I Interactions in a network

5. Data visualization
I Exploration of the data, outliers detection, errors
I Reduction of the dimension
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Challenges in Statistical Learning

Challenges in statistical learning

High dimension
I A lot of variables per individual
I Aim: learn the effect of all these variables even when the number of

individuals / units remains small

Repeated measures
I Repeated trials
I Longitudinal measurements: several measures in time
I Aim: learn the variability in the process and the evolution in time

Structured data
I Connected objects: a function measured with high frequency
I Functional data
I Aim: learn a function (infinite dimension) and not only some parameters
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Challenges in Statistical Learning

Main approaches in statistical learning

Parametric versus Non Parametric

Non parametric
I No prior knowledge of a model, of a relationship between variables
I Objectives: learn the model, the distribution of the variables, the network

Parametric
I Models with meaningful parameters: chemical interactions, physical laws,

biological transformation
I Prior models: linear regression, reliability
I Objectives: numerical optimization of a criteria

Challenges

Parsimony: high dimension but maybe few significant signals

Optimization: new technics to optimize complex criteria/space

Distributed calcul: scalability of the solution
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1. Decision rule

1. Decision rule, classification

Supervised learning: class labels
are provided

Aim: learn a classifier to predict
class labels of novel data

Statistical tools
I Logistic regression

(parametric)
I K-nearest neighbors

(non-parametric)
I Decision tree

(non-parametric)
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1. Decision rule

Decision tree
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1. Decision rule

K-nearest neighbors
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1. Decision rule

Examples

Advanced personalized medicine

I Predict the best treatment from the knowledge of biomarkers measured at an
initial clinical visit

I Logistic regression and decision tree
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1. Decision rule

Examples

Manufacturing industry
I High production costs
I Some non conformity at the end of the

production process
I Large number of sensors

I Decision tree to predict early in the production process which piece is likely to
be not conform

I Reduce the proportion of non conformity
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2. Clustering

2. Clustering

Unsupervised learning: no class
label is given

Aim

I Creation of groups of similar
individuals / objects /
variables;

I Understanding the structure
underlying the data

Statistical tools
I K-means (non-parametric)
I Mixture model (parametric)
I Bi-clustering, Stochastic

Block Model (parametric)

A. Samson Grenoble, 28/11/2017 10 / 24



2. Clustering

Examples

Consumption curves
I A curve per consumer
I Prediction of the future consumption

I Clustering and identification of profiles by mixture model of functional data
I Prediction based on these clusters
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2. Clustering

Bi-clustering
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2. Clustering

Stochastic block model
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2. Clustering

Examples

Autonomous Vehicle
I Precision of the position
I Sequence of images

I Segmentation of the images by Stochastic Block Model
I Prediction of the position
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3. Learning a model

3. Learning a model

Aim
I Fit the data with a model
I Regression model

Statistical tools
I Differential equations
I Point process
I Estimation of the parameters

(parametric)
I Maximum likelihood
I Bayesian
I Penalization with high

dimension
I Estimation of the model

(non-parametric)
I Splines, Wavelets, Fourier
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3. Learning a model

Examples

Immunotherapy

I Efficacy of the treatment
I Optimization of the treatment, in terms of dose and time to treatment
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3. Learning a model

Examples

Maintenance, reliability
I Maintenance optimization
I Imperfect maintenance

I Virtual age modeling, point processes
I Optimization of the next preventive maintenance
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4. Learning associations

4. Learning associations, statistical tests

Aim
I Correlation between

variables,
I Learning communities

and networks

Statistical tools
I Correlation tests,

multiple tests
I Graphical models
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4. Learning associations

Examples

Genomics
I Effect of the pollution on epigenetics

and baby growth

I Associations tests and multiple testing
I Mediation to infer causality
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4. Learning associations

Examples

Neurosciences
I Understanding the connexions in the brain
I Longitudinal, functional data through EEG, MEG data

A. Samson Grenoble, 28/11/2017 21 / 24



4. Learning associations

Statistical learning frameworks

Open source development frameworks available

Possible to use in industry
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4. Learning associations

Take-Home message

Core-idea of statistical learning
I Variety of (industrial) problems
I Variety of statistical questions
I Variety of learning approaches
I Machine learning: decision rule, clustering
I Statistical learning: model learning, association/correlation

A strategy that is effective across different disciplines
I Health
I Environment
I Energy
I Marketing
I Manufacturing industry

A. Samson Grenoble, 28/11/2017 23 / 24



4. Learning associations

Some directions of ongoing research

Structured data, connected objects

Social networks, interaction graph

High dimension

Optimization with constraints

Distributed computation
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