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Abstract—Self-timed Ring based True Random Generators
(STRNGs) extract randomness from the jitter of events evenly
propagating in a Self-Timed Ring (STR) oscillator. Security of
such generators is primarily based on an entropy assessment:
an accurate model of the minimum entropy per output bit
with physical measurement of the noise source. This assessment
is reinforced with both entropy source monitoring and online
testing of the output bits. This paper addresses the security of
the STRNG. First we identify potential vulnerabilities on the
generator and define a threat model. Based on this threat model,
we analyze the effect of active attacks in analog simulations
(in a 55 nm technology), and by emulating them in a high-
level simulation model. Then, we propose simple and efficient
countermeasures to thwart attacks focusing on the generator.
Finally, we evaluate the output sequences before and after attacks
to validate the proposed countermeasures.

I. INTRODUCTION

High statistical quality random numbers are required in var-
ious cryptographic devices. They serve to generate confidential
keys, nonces, random masks and a variety of cryptographic
keys. Moreover, they are often used for countermeasures
that protect circuits against several types of attacks. These
numbers need to be uniformly distributed. Furthermore, in
some applications (e.g. symmetric encryption key generation),
they also need to be unpredictable.

Uniformly distributed random numbers can easily be ob-
tained with mathematical constructs called Pseudo Random
Number Generators (PRNGs). These can be implemented in
software or in hardware. Security of such generators is usually
based on computational hardness: predicting the algorithm’s
output is an unsolvable problem. The highest security level
is obtained by periodically updating their seed using a True
Random Number Generator (TRNG) [1].

TRNGs are mechanical or electrical devices that extract
entropy from a physical phenomenon. They generate random
numbers which are ideally unpredictable. The concept of
unpredictability cannot be measured in the output sequences
(e.g. using statistical test batteries). It can only be assessed by
measuring the noise source, modeling the extraction mecha-
nism, and estimating Shannon’s entropy per output bit [1], [2].

TRNG outputs should be unpredictable. Therefore, they
also need to be not manipulable. AIS31 evaluation criteria
for TRNGs include internal testing for total failure of the
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entropy source and some simple online tests to detect major
statistical defects of the output sequences [3]. Viktor Fischer
further discusses security of TRNGs in [4]. He suggests that
even better security can be obtained by directly monitoring the
entropy source, e.g. by measuring the noise source even with
low precision.

Notice that a compromised RNG will jeopardize the whole
cryptographic system security. Thus, it is surprising that very
few works adress active attacks on TRNGs. To our knowledge,
there are three practical attacks published as of today: power
supply manipulation [5], electromagnetic injection attacks [6]
and glitch attacks targetting the sampling clock [7].

A reliable TRNG architecture has been proposed in [8]
based on a Self-Timed Ring oscillator (STRNG). [9] proposed
a simple formula giving a lower bound of the entropy per
output bit for STRNGs. Unpredictability (lower bound of
entropy close to 1) is guaranteed by setting the appropriate
number of ring stages according to measured jitter standard
deviation.

In this work, we focus on non-manipulability. We take a
closer look at the security of STRNGs by providing ways to
guarantee and enforce the unpredictability assessment. Section
II describes the architecture of the STRNG and its behavior.
Section III defines a threat model for this TRNG and proposes
appropriate countermeasures as well as means to monitor
the entropy of the output sequences. Section IV evaluates
these attacks and the proposed countermeasures using analog
simulations in a 55 nm technology as well as a high-level
model behavioral model taking into account noise and analog
phenomena in the STR. Finally, Section V concludes the paper.

II. SELF-TIMED RING BASED TRNG (STRNG)

This section presents the STRNG [9] and its mathematical
model.

A. Self-timed ring oscillators

1) Architecture and temporal behavior: Self-timed Rings
(STR) are oscillators in which events (electrical transi-
tions) propagate without colliding thanks to a handshake
request/acknowledgment protocol. The architecture of a STR
is depicted in Fig. 1. It corresponds to the control circuit of
an asynchronous micropipeline [10], which has been closed to
form a ring of L stages. Each stage is composed of a Muller



gate with an inverted input R. Dff and Drr are the forward
and reverse static propagation delays of a ring stage associated
respectively with inputs F and R.

Figure 1: Architecture of a STR

STR stages communicate using a two-phase handshake
protocol [10]: unlike in classical ring oscillators, several events
can propagate without colliding. The ring is initialized with N
events which start propagating in the ring during a transient
state. These events end up in a steady state where they arrange
themselves in one of two ways, depicted in Fig. 2: either they
form a cluster that propagates around the ring (burst oscillation
mode), or they spread out all around the ring and propagate
with a constant spacing (evenly-spaced oscillation mode) [11].

Figure 2: (a) Burst oscillation mode - (b) evenly-spaced
oscillation mode - (c) Frequency in the evenly-spaced mode
as a function of the ring occupancy Ω

Both oscillation modes are stable and depend on the static
parameters of the STR. For a given implementation, they only
depend on the ring occupancy Ω = N/L, where L is the
number of ring stages and N the number of initialized events.
In practice, the evenly-spaced oscillation mode is obtained for
an interval of occupancies around Ω0 given by [12]:

Ω0 =
Dff

Dff +Drr
(1)

Conversely, the burst mode is obtained for corner values of
occupancies.

Moreover, the STR’s frequency does not directly depend
on its number of stages as in inverter ring oscillators. It rather
depends on the ring occupancy Ω. As shown in Fig. 2, it
increases with the number of events, it reaches its maximum
at Ω0 defined by Eq. 1, and it starts dropping at higher
occupancies.

2) Charlie and drafting effects: STR oscillation modes are
due to two analog phenomena in the Muller gate: the Charlie
effect and the drafting effect [11]. The Charlie effect represents
the impact of the separation time between the inputs events
on the gate propagation delay: the closer the events are at

the inputs of a Muller gate, the longer is its propagation
delay. The drafting effect represents the impact of the time
elapsed between successive output commutations on the gate
propagation delay: the lower is this elapsed time, the lower is
the propagation delay.

In the STR, the Charlie effect causes events to push away
from each other when they get close: the propagation delay
rises when the separation time at the inputs is lower. On the
opposite, the drafting effect causes events to gather together:
the propagation delay shrinks as the elapsed time between
successive events decreases. When the ring occupancy is low,
events gather together and propagate with a hold distance,
noted Dhold which depends on the Charlie and drafting effects
strength. For medium range occupancies, the Charlie effect
may become retro-active: events push away from each other
until they spread uniformly in the ring. The higher the Charlie
effect is, the larger is the interval of occupancies giving the
evenly-spaced oscillation mode. Higher occupancies lead to
similar behaviors than low occupancies. Events in request
paths have to wait for acknowledges: in the asynchronous
paradigm, free stages become lower than stages actually pro-
cessing data. In this case, it is the propagation of acknowledge
signals which sets the oscillation frequency. These behaviors
are extensively described and modeled in [12], [11] and [13].

3) Sub-gate delay time-stamping using STRs: One major
consequence of the above presented features is that STRs
can provide uniformly distributed events with a sub-gate
time resolution. In classical ring oscillators, this resolution
is limited by the propagation delay of one stage: only one
event propagates in the ring. Conversely, STRs allow phase
differences that are fractions of the propagation delay of one
ring stage because several events evolve simultaneously in the
ring. Actually, a single event propagation in the ring causes
a 90o phase shift of the oscillating signal. If N events are
confined in a L-stage STR and evenly spread around the ring,
the phase shift between two stages separated by n stages
is [13]:

ϕn = n× N

L
× 90o (2)

According to Eq. 2, if the number of stages is a multiple
of the number of events, some stages may exhibit the same
absolute phase. However, if the number of events and the
number of stages are co-prime, the STR exhibits as many
different equidistant phases as the number of stages. If T is
the oscillation period, the phase resolution in time domain is
then:

∆ϕ =
T

2L
(3)

B. STRNG principle and architecture

The STRNG architecture and principle chronogram are
depicted in Fig. 3. The STR is set in its evenly-spaced
propagation mode, with a number of events N co-prime with
its number of stages L. This ring provides L signals (Ci)1≤i≤L
having the same period T , a constant phase difference ∆ϕ
between them, and distributed over half an oscillation period
of the STR output (L∆ϕ = T

2 ). These signals are subject to



jitter variations. For each event, they are represented in Fig. 3
with shaded rectangles and Gaussians around its mean time.
In Fig. 3, signals are re-indexed by order of their events arrival
time.

Each signal Ci is sampled with the same reference clock
clk using a flip-flop. Therefore, whatever the sampling
moment t, there exist j such as |t − tj | ≤ ∆ϕ

2 , where tj is
the switching moment of the signal Cj . If jitter variations are
larger than the phase difference ∆ϕ, the signal Cj is sampled
in its uncertainty zone as shown in Fig. 3. The obtained
sample is then random, and subsequently the output of the
XOR tree also.

Figure 3: (a) STRNG Architecture (b) Principle chronogram

The main feature of this design is its ability to precisely
adjust the relative phases of successive events to the magnitude
of the jitter. By increasing L while keeping the same ratio
N/L, the ring frequency remains constant. This way, mean
value of ∆ϕ can theoretically be set as small as needed.

C. Entropy model

[9] proposes a stochastic model for the STRNG, allowing
to compute a lower bound of entropy per output bit Hm as a
function of the jitter magnitude and the STR parameters. Hm

is a function of the jitter magnitude σ (the measured standard
deviation of the propagation delay of one ring stage), T the
STR oscillation period, and L the number of ring stages. P0 is
the probability of sampling a ’0’ in the worst case, i.e. when
the sampling occurs the furthest away from STR edges. Hm

is computed using the following set of equations:

Hm = −P0 log2(P0)− (1− P0) log2(1− P0) (4)

P0 = 1− 2φ(
T

4Lσ
) + 2(φ(

T

4Lσ
))2 (5)

Φ(x) =
1√
2π

∫ x

−∞
e

−t2

2 dt , x ∈ R (6)

By setting this minimum bound near 1 (by selecting the
appropriate number of ring stages L), one can garantee that the
sampled bit is unpredictable whatever the sampling moment.

III. THREAT MODEL AND PROPOSED COUNTERMEASURES

This section presents an extended threat model of STRNGs.
We propose a general model that focuses on threats targeting
both the entropy extractor and the entropy source. Moreover,
a set of countermeasures to protect the STRNG is presented.
In this paper, we focus on active attacks able to control the
output of the STRNG by modifying its behavior. Passive
attacks, which try to anticipate the random values, are powerful
attacks but are out of scope of this paper. Furthermore,
resilience of a TRNG against passive attacks is guaranteed
once unpredictability of its output sequences is proven.

A. Attacks on STRNG: related work

To the best of our knowledge, only one paper has been
published on the security of the STRNG. In [7], H. Martı́n et.
al. have stressed the generator with three types of attacks, and
analyzed their impact on the output sequences. Firstly, they
applied environmental manipulations with underpowering and
high-temperature. Both attacks showed a limited impact on
the output sequences. Increasing temperature reduced the ring
frequency, and hence, increased its phase resolution. However,
it also increased thermal noise. Since the two phenomena
compensated each other, the quality of the output sequences
was not significantly impacted. On the other hand, the ring
frequency decreased with the power supply voltage. Although
the impact on the phase resolution is more perceptible than for
temperature, the subsequent entropy loss is easily compensated
with arithmetic post-processing consisting of a parity filter [7].

Furthermore, H. Martı́n et. al. present attacks using power
supply glitches or clock glitches that successfully produce bias
in the output sequences. Power glitches temporarily shut down
the system, and may affect the ring behavior. Overclocking
produces timing violations in the XOR-tree. Authors show
that it is possible to control the output of the STRNG by
compromising the XOR-tree. Moreover, they propose elemen-
tary countermeasures that protect against this kind of attack.
They show that a more pipelined version of the extractor
(they implement a ripple structure of the XOR-tree) relaxes
the critical-path and reduces this threat. They also presents
a lightweight countermeasure based on a filter structure that
protects the STRNG against clock glitches.

B. Threat model

In this work, we have identified six threats which can be
separated into threats on the entropy source and threats on the
entropy extractor. Threats on the STR can be classified in two
categories:
1) Threats which modify the ring frequency without compro-
mising the uniform distribution of events (degraded perfor-
mances)
2) Threats which potentially compromise the uniform distri-
bution of events (incorrect behavior)

Fig. 4 classifies those threats depending on their target
(entropy source or extractor) and on their effect on the TRNG
behavior.



Figure 4: Classification of threats on STRNGs

1) Overclocking: By reducing the clock period (even for
a very short time), one can generate timing violations and
hence incorrect behavior of the circuit. The STR falls in the
Delay Insensitive (DI) class of asynchronous circuits. It is
thus not responsive to overclocking. However, the extractor
can be impacted by such attacks and thus give the control
of the output bits to the aggressor. Notice that increasing the
datapath propagation time while keeping the same clock period
will generate similar timing violations. Thus the proposed
overclocking threat also includes such attacks.

2) Oversampling: It consists in forcing the extractor to
sample inter-dependent values. This is achieved by changing
the ratio between the STR frequency and the system clock fre-
quency. The inserted redundancy reduces the entropy of each
generated random word and thus compromises the security of
any cryptographic application using it.

3) Phase resolution modification: H. Martı́n et al. have
demonstrated that STRNGs are robust against environment
variations (temperature, voltage) [7]. The STR frequency is
actually more stable than classic inverter ring oscillators [14].
Slight over-design handles such variations and allows to keep
a very good entropy over the full range of operation. But it
is highly probable that powerful active attacks such as EMAs
(ElectroMagnetic Attacks) or OFIAs (Optical Fault Induction
Attacks) can modify the frequency of the STR while keeping
the equidistant phases in the ring. According to equation 3, it
will result in an increase of the phase resolution that indeed
decreases entropy.

4) Burst-mode: Another relevant threat is to force the STR
into its burst oscillation mode. In this case, the TRNG principle
is compromised. The lower bound of entropy per output
bit is drastically reduced, and the output sequences become
predictable. Modifying the number of events propagating in
the STR is a plausible attack, any FIA (Fault Injection Attack)
and particularly reset-glitch attacks should be considered.

5) Phase-covering-mode: Phase-covering-mode is another
insecure state of the STR. This state is observable when the
number of events and the number of stages are not co-prime.
This means there exist a common divisor X between N and
L. In this case, events are gathered in groups of X phases
according to Eq. 2. The resulting ∆ϕ is then multiplied by the
same factor X and the minimum entropy is highly impacted.

6) Bottleneck: If one ring stage has a propagation delay
several times larger than the others, it acts as a bottleneck for
the events propagation. The separation time of this stage inputs
is so large than the Charlie effect is negligible. Events gather at
the input of this stage, creating a queue where the propagation
of the acknowledge signals limits the events flow. Conversely,
right after the incriminated stages, events propagate freely
until they reach the last event of the queue. When the ring
exhibits a bottleneck, its oscillation period depends only on
this long stage delay. This behavior is similar to burst-mode,
but it may be confused with a normal evenly-spaced mode as
it produces signals with 50% cycle times. However, in this
case, the correct behavior of the generator is not guaranteed
anymore.

C. Active attacks on the entropy source

In this section, we present two active attacks that target
the entropy source. These attacks are efficient since they
can potentially invalidate the TRNG behavior. Each of them
can activate one or several of the threats discussed in the
previous section. Furthermore, they are easily implementable
at reasonable cost.

1) Token/bubble injection: The token and bubble concept is
often used to describe the state of asynchronous controllers. A
token means that the stage is processing data, while a bubble
signifies that the stage is free and ready to process new data. In
the STR, a stage contains a token (T) if its output is different
from its input. It contains a bubble (B) if its output is equal
to its input. With this formalism and the stage truth table, it
can be noted that tokens propagate to next stages if and only
if the next stage contains a bubble. Tokens are interpreted as
events which propagate in the ring.

One attack consists in modifying the number of events prop-
agating in the ring. When only few events are added/removed,
the STR may still exhibit evenly-spaced oscillation mode, but
its phase resolution can be slightly impacted. However, if the
attack puts the ring into a burst mode or phase-covering mode,
the quality of the computed random bit sequence will be highly
degraded. Depending on the STR size and configuration, many
events must potentially be inserted/removed to provoke the
burst-mode. However, very small alteration of the number of
tokens may be sufficient to provoke phase-covering mode if
the ratio N/L is favorable. For example, according to Eq. 2,
removing two tokens from a 125-stage STR with 62 tokens
increases ∆ϕ by a factor 5 (5 is the greatest common divisor
of 125 and 60).

For a given ring and at any moment, reading the value held
in each stage provides the localization of tokens and bubbles.
Two different adjacent values should be interpreted as a token
(T) while two identical adjacent values represent a bubble (B).
For instance, the pattern ”001110101” must be interpreted as
”BTBBTTTTT”. It represents the state of a 9-stages STR with
6 events propagating in the request paths.

Notice that, due to the ring topology, only even numbers of
tokens can be initialized in a self-timed ring. This rule also
applies to the addition and removal of tokens. Thus, removing



two tokens from the 9-stage ring to get a ”BTBBTBBTT”
pattern is simply equivalent to force the value of the seventh
bit from 1 to 0 in order to obtain the pattern ”001110001”.
More generally, removing two tokens from a ring can be done
by changing any ”0[1]*0” pattern into a ”0[0]*0” pattern, or by
changing any pattern ”1[0]*1” to ”1[1]*1”, where [1]* refers
to an arbitrary number of successive ’1’ values.

There exist different techniques to perform such attack. If
the STR initialization vector (which defines set and reset
signals of each stage) is accessible to the aggressor, he can
easily change the ring configuration. Furthermore, applying
a glitch on initialization signals may remove or add tokens.
Fault injection attacks should give reproducible results if the
attacker is able to target specific parts of the STR and to force
the state of each stage individually. Laser can be potentially
used to inject such faults in the ring. However, a less invasive
attack using electromagnetic pulse might be efficient too and
less expensive.

2) Delay modification: The second attack aims at adding
delay in one or several stages of the STR. This attack does
not change the number of tokens in ring, but it decreases
the oscillation frequency. If the attacker adds a slight delay,
the STR may keep an equidistant phase distribution mode.
In this case, the frequency drop leads to an increase of the
phase resolution and, thus, to a lower entropy. However, such
modification may not be sufficient to effectively degrade the
statistical quality of the output sequences, especially if post-
processing is used (usually it is). In fact, most generated bits
yield more entropy than the estimated lower bound.

The attacker can drastically increase a stage delay. At some
point, he can create a bottleneck. In this case, correct behavior
of the generator cannot be guaranteed and the lower bound of
entropy per output bit decreases drastically.

Several techniques can be potentially exploited to insert
such a delay in a CMOS gate. Environmental manipulations
(voltage, temperature) are the simplest, but they have a global
effect: they impact both the frequency and the jitter, but
do not compromise the evenly-spaced propagation of events.
Electronmagnetic attacks that modify the delays in a design
should also be considered.

D. Proposed countermeasures and implementation

This section presents several countermeasures to prevent or
detect most of the presented attacks.

1) Carefully selecting the number of stages: A basic coun-
termeasure can protect the STRNG against attacks trying
to provoke a phase-covering mode. It consists of choosing,
during design phase, a number of stages L for which ∀N ∈
N ∩ [2, L− 2], the ratio L/N cannot be reduced. This can be
simply done by selecting L as a prime number. In this case,
the ring is protected against any token/bubble modifications as
long as the STR stays in the evenly-spaced mode. However,
this countermeasure does not protect against alterations of the
ring structure. Indeed, it is worth considering that, using a
Focus Ion Beam (FIB), an attacker can directly modify the
ring structure and remove some stages. An aggressor can then

Figure 5: Architecture of the proposed token monitor

modify the ratio between the number of stages and the number
of events (L/N ). However, such attacks are very complex
and expensive. They are also thwarted by any invasive-attack
detectors.

2) Event counter: Changing the number of events in the
STR also affects the lower bound of entropy if the phase
resolution is sufficiently increased. However, in normal opera-
tion (without attacks), the number of tokens circulating in the
STR cannot fluctuate (it is set at initialization). Based on this
fact, a very simple countermeasure consists in monitoring the
number of events in the ring. Such a monitor raises an alarm
when a modification is detected, which can be interpreted
as an intrusion attempt. Appropriate reaction, like TRNG
re-initialization, should be performed. Figure 5 shows the
architecture of the proposed monitor. The input and the output
of each individual Muller gate are XORed together. According
to the token/bubble abstraction model, an event is processed
by the stage if the two signals are different and hence the XOR
gate outputs a ’1’. The number of events is then extracted by
measuring the Hamming weight of the vector composed by
the L XOR-outputs.

3) Internal mode for easy monitoring: AIS31 requires
embedded tests to monitor the quality of the random numbers
generated [1]. However, these tests do not detect pseudo-
randomness. They only assess that the output bits are uni-
formly distributed. In other words, a failure of the entropy
source (i.e. violation of the stochastic model) may not be
detected if the pseudo-randomness generated through the sam-
pling of the STR phases with an external clock is still sufficient
to validate the online tests. To treat this limitation, we propose
to use the delayed output of one signal of the ring as sampling
clock, also called internal mode. In this case, the sampling
clock is synchronized with the STR output and no pseudo-
randomness is generated because there is no deterministic
phase drift between them. In this situation, simple online tests
as proposed in [3] are more reliable: it is ruled out that they



pass due to pseudo-randomness, and if they fail, it is probable
that the entropy per output bit is not sufficient.

IV. EVALUATION RESULTS

In this work, both token injection attacks and delay modifi-
cation attacks have been evaluated using mixed-signal simula-
tions with UMC (United Microelectronics Corp.) CMOS 55nm
technology models. In addition, a high-level model has been
developped for analysis purposes. It includes analog effects of
the STR by modeling the Charlie and drafting effects following
the timing model of the Muller gate discussed in [12] and
[11]. It also models jitter at the level of each logic gate by
varying its propagation delay during execution following a
normal distribution with parametrable mean value and standard
deviation. This way, a high-level model of the TRNG can be
impelemented and its output bitstreams can be extracted and
evaluated. Attacks have been emulated with this behavioral
model and results of statistical tests assess the validity of
the proposed threat model and the efficiency of the proposed
countermeasures. In the sequel, we present the results of our
experiments.

Figure 6: Simulation set up

A. Analog simulations

A mixed-signal environment based on Dolphin Integration’s
SMASH tool has been used for this analysis. Entropy source
is modeled in SPICE using CMOS 55 nm transistors model
while the entropy extractor countermeasures are described in
HDL. Thus, the attack sequences can be easily built at RTL
level and their precise impact evaluated in analog simulations.
Fig. 6 shows the structure of the simulation environment.

For the needs of the demonstration, a STR with 125 stages
has been built and initialized with 62 tokens. The token
removal attacks have been performed using the set signals
of the four last stages (121 to 124) as soon as a ”1001”
pattern is detected. Fig. 7 presents a trace of the attack and
its impact on the STR phases. During the attack one can see
the token counter decreasing from 62 to 60. This proves the
feasibility of the attack. The attack window is only 80 ps large
in our case. However, it should be larger once the permanent
mode of the STR is reached and when all RC parasitics are
included in the simulation. Reducing power supply voltage
and increasing temperature will furthermore enlarge the attack
window. However, it should be technically very difficult and

Figure 7: Analog simulation of token injection attack

expensive for an attacker to simultaneously monitor four stages
and synchronize a set or reset glitch during such a narrow
window. We apply a glitch of 50 ps but there is no restriction
on its size to effectively implement the attack. A larger pulse
would temporary stop every incoming token. The STR will
come back to its standard propagation mode once the reset is
relaxed.

Less precise attacks with no synchronization of the reset
glitches can be considered. However, it appears that the STR
is quite resilient to such attacks. Indeed, in the evenly-spaced
mode, tokens are uniformly spread over the ring. It means
that, when many events are present in the self-timed ring,
the pattern ”010” is more probable. On the other hand, when
few tokens propagate, the pattern ”0[1]*0” is more frequent.
Furthermore, when the ratio Ω = N/L tends to 1/2, events
are distributed with a periodic ”[0011]*” pattern. An arbitrary
reset glitch will not have the same effect depending on the
occupancy ratio Ω. This glitch tends to remove tokens when
there are many tokens (change ”010” into ”000”) and to add
tokens when there is a majority of bubbles (change ”111”
to ”101”). Nonetheless, we remark that such non-controlled
reset-glitch attacks have a high probability of leaving the ring
configuration unchanged.

We also implemented delay attacks. A delay cell, usually
used to fix hold timing in digital circuit, is inserted on
the request signal between two stages of the STR. Other
techniques may be used, like additional capacitance or directly
modifying the SPICE model of one Muller gate. However,
the delay cell seems to be the most predictive way to do
it, particularly because characterization figures were available
through the liberty model of this standard cells. We performed
two attacks, one with a delay value similar to the propagating
time of a Muller gate and a second with a delay approximately
5 times bigger. As expected, the first attack does not modify
the oscillating mode of the STR: even if the frequency is
slightly reduced, the ring keeps its evenly-spaced distribution.
However, the attack using a bigger delay successfully provokes
a bottleneck. In this mode, a part of the tokens are queuing
before the stage where the delay has been inserted and the
propagation of the acknowledge signal limits the token flow.
The other part of the ring, starting from the second stage after
the delay, exhibits a fast propagation of tokens, which freely
propagate until they reach the last event of the queue.



Threat class Main effect Attack Tstr

(ns) Hm FIPS 140-1 Event
counter

None (reference) N/A N/A 2.130 0.99 10/10 ok
Degraded

performances
∆ϕ modification Remove 10 tokens 2.394 0.98 10/10 alarm
∆ϕ modification Add 100ps delay 2.414 0.98 10/10 ok

Incorrect
behavior

Phase covering mode Remove 2 tokens 2.160 0.19 10/10 alarm
Phase covering mode Remove 12 tokens 2.544 ∼ 0 0/10 alarm

Burst mode Remove 52 tokens 12.522 ∼ 0 2/10 alarm
Bottleneck mode Add 1ns delay 5.993 ∼ 0 0/10 ok

Table I: Attacks and their effects on the STRNG: STR os-
cillation period TSTR, lower entropy bound per output bit
Hm, number of sequences that pass FIPS 140-1 out of 10
sequences, output of the token monitor alarm

B. High-level simulations

Starting from the same environment, spice netlist of the STR
can be replaced by a high-level behavioral model. Using less
complex model shortens the simulation runtimes and allows
to generate the random bits sequences required to perform
statistical tests. The high-level model is written in HDL and
integrates the Charlie and drafting effects of the Muller gate.
This model is then partially timed to add the analog behavior
of each elementary stages of the STR. The jitter is also
modeled at the level of each logic gate. The mean value of
the propagation delay of one stage (excluding the Charlie and
drafting effect) is of 500 ps and jitter standard deviation has
been set to 10 ps for each ring stage.

The testbench of the analog simulations is kept and we
performed the same token injection and delay modification
attacks than in analog simulation. For each attack, we measure
the oscillation frequency and we compute the lower entropy
bound -using Eqs. 2, 4, 5, and 6. Then, we extract 20 sequence
of 20000 bits that we evaluate using FIPS 140-1 statistical test
suite.

C. Results

Results of the previous experiments are summerized in
Table I. Table I describes, for each attack: the expected effect,
the measured oscillation frequency TSTR, the computed lower
entropy bound Hm, the number of sequences that passed FIPS
140-1 out of 10 sequences, and finally the token monitor
output state (alarm active or not).

The number of ring stages in the reference design is set up
according the jitter standard deviation parameter in order to
provide a lower entropy bound Hm near 0.99. When no attack
is applied, the ring frequency is of 2.13 ns. The token monitor
output alarm is inactive. As expected from this setup, all of
the output sequences pass FIPS tests.

1) Delay modification attacks: When we add 100 ps delay
(1/5 of the mean propagation delay of one stage), the ring
is not affected except during the attack: events quickly re-
converge to a steady evenly-spaced propagation regime. How-
ever, as expected, lower entropy bound is barely impacted
although the ring frequency is slightly modified. The output
sequences are still uniformly distributed (they pass the FIPS
tests).

However, if we add 1 ns delay (2 times the mean propaga-
tion delay of one stage), then the ring exhibits a bottleneck.

Simulation shows that events are not uniformly distributed in
the ring: the ring stage with a long delay has a large phase
difference with the nearest other signal phases. As a conse-
quence, the lower entropy bound (which is computed using
the worst case phase difference), approaches 0. Subsequently,
none of the output sequences passed FIPS tests.

Note that the token monitor does not detect such attacks.
However, we can observe that in this attack, the ring frequency
drastically increased. A countermeasure against such threats,
based on a monitor of the ring frequency, is a promising
solution that will be studied is future works.

2) Token injection attacks: If we remove 10 tokens from
our initial configuration, the ring still exhibits an evenly-spaced
propagation of 52 events in 125 stages. Note that 52 and 125
are still co-prime. Thus, as expected, lower entropy bound
is barely impacted although the ring frequency is slightly
modified. As a result, the output sequences pass the FIPS
tests. In addition, the token monitor detected that the number
of events has been modified.

If we remove 2 or 10 tokens from our initial configuration,
the ring still exhibits an evenly-spaced propagation but is in
phase-covering mode. The number of events is not co-prime
with the number of stages anymore. In this case, lower entropy
bound is significantly impacted and the output sequences may
not pass the statistical tests. Note however that the actual value
of entropy per output bit can be way higher than the estimated
lower bound, but this cannot be guaranteed by the designer (he
does not control the phase between the sampling signal and
the STR outputs). For instance, the configuration in which two
tokens have been removed still passed all the tests because the
sampling moment was synchronized with one signal edge with
a very low phase difference. Nonetheless, the token monitor
detected that the number of events has been modified.

Finally, if we remove 52 tokens from the ring, it enters its
burst oscillation mode. In this case, the lower entropy bound
is near 0 and the output sequences do not pass FIPS tests, as
expected.

3) Alarm management: Since the token monitor counts the
number of events in the STR, it can be configured to provide
alarms with different severities. Be Nm the new number of
events after an attack modifying it. If Nm is not co-prime with
L, and if Nm is outside of the occupancies values giving the
evenly-spaced mode, then a total failure alarm (TF alarm) must
be produced. In this, case the TRNG must be re-initialized.
If Nm is such that only the ring frequency is modified, a
low-level alarm must be produced. Depending on the TRNG
context of usage, re-initialization may not be necessary. For
example, if cryptographic post-processing is used (basically a
PRNG at the TRNG ouput), then the output bits may still be
used as long as the alarm is not active longer than the PRNG
period. If a low-level alarm is active for too long (with regards
to the output PRNG periodicity), it should be transformed into
a TF alarm.



V. CONCLUSION

Security of TRNGs is based on both the unpredictability
and the non-manipulability of their output. STRNGs are a new
class of TRNGs based on asynchronous design techniques. The
unpredictability of their output is assessed using a stochastic
model and physical measurements of the noise source. In this
work, we analyzed the security of STRNGs and provided ways
to monitor their outputs and protect them against attacks. In
particular, we identified two attacks that may severly threaten
the STRNG: token injection attacks and delay modification
attacks. We analyzed their effect by emulating them in analog
simulations and by testing the compromised output sequences.
We showed that these attacks can drastically reduce the
entropy of the output bits (even near 0) and produce output
sequences with major statistical defects. Finally, we proposed
three countermeasures at architectural level to thwart these
attacks: selecting a prime number of stages, using an internal
STR output as a sampling clock, and monitoring the number of
events in the ring. By following these simple design rules, and
by monitoring the entropy source - in addition to traditional
on-line tests -, the designer can guarantee at any time that the
output is not under manipulation.
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