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Overall objectives

* Use a radically different approach to perform
computation : stochastic computing
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* Qutperform standard computer and GPU in term
of speed and energy efficiency for Bayesian
inference problems
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CONTEXT
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High energy consumption

~ 200 KW ~ 20 W

~ 3,9 m?3 e 1.3
i Stéréo Camera ~ 0.5M3
2 lidars ~ KW

LERSY VAL et

MicroBayes : 5



Moore's Law limits
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Rebooting Computing

http://rebootingcomputing.ieee.org/rc-summits/rcs4/presentations
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®BAMB

Bottom-up Approaches to Machines dedicated to Bayesian Inference
FET Project BAMBI FP7-ICT-2013-C

«hio study chlamydomaonas» :

New hardware thinking:
* Telegraphic signal
* new device

Bayesian model description
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Good results with minimal hardware

Exact inference

@.

N=1: € <2%

N=10: €< 0.1%
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N=200: € <0.01%

€. mean location precision

N: length of the bit stream used for the priors
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MicroBayes Challenges

(a) To design non von Neumann architectures
dedicated to the processing of stochastic bit
streams.

(b) To study new algorithms for stochastic inference
based on generating sets.

(c) To evaluate stochastic machines on difficult
Bayesian inference problems related to low-level
sensor fusion.
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SCIENTIFIC APPROACHES
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Design of stochastic machines

Proposal Module
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High performance CMOS TRNG

TIMA Self-timed ring based TRNG

Extracts randomness from the jitter of a STR, regardless the jitter

magnitude
The design is flexible: area, bit rate and security level can be tuned

with a very low design effort
Passes AIS31 and NIST tests at high bit rates (a few hundred Mbit/s)

Entropy Extraction

Self-timed Ring
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Compilation tool chain for
stochastic machines

Va: Dy, Da, M
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New algorithms for stochastic
inference

* Realistic problems are leaving in high
dimension space.

e Stochastic inference is equivalent to explore
this space to search for high probability
density regions.




MicroBayes :
Stochastic Machine with Programmable search
strategies

* A generating set is a way to entirely explore a
given search space.

* Choosing one generating set is a way to select
an exploration strategy: for example low and
large grain exploration.

* Exploration strategies may be combined for a
particular application.
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MicroBayes:
Evaluate stochastic machines on difficult Bayesian
inference problems

Sound Source Localization Sound Source Separation
Acoustic Feature GMM
mixture extraction classifier Mixing Process
Speech :
Azimuth
M models W x
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Problem: Recover all aj(t), s;(t) given only the x;(t)




ORGANIZATION
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M1 : Architecture and compilers for stochastic machines

‘M1:
Circuit Architecture
*High throughput RNG
i ProposaIModuIe ‘
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g gipsa-lab Decision module

‘M1:
*Dimensioning
*Experimental
requirements
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M2: Algorithms for stochastic search

* M2: explore the search space for high
probability density regions with
generating sets:

* Theory and formalization

* Combination to build exploration

policies

i INSTITU
l FOURIER

* M2: Define appropriate search
strategies in high dimensions
(ie: Source separation)

gipsa-lab

i
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M3: Stochastic algorithms for the localization and
the separation of sound sources

*M3
*Bayesian formalization source
localization & separation

FOURIER

uf

*Specific models for source
localization and separation
addressing the problem of
guantization
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=
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M4: Evaluation on simulated and real-world acoustic signals

‘M4
*Experimental setup
*Quantitative evaluation &
discussion

*‘M4:
* Compiler and Software
* Algorithms

gipsa-lab
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Postdoc
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Postdoc
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Expected Results

* Prototype of a programmable stochastic
machine

* New algorithms for stochastic inferences
allowing to address a variety of applications

e Demonstrations on two difficult tasks
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Impact

e Extracting precise information from large amount
of noisy data is a general problem.

* A success would lead to high performances
devices (speed and energy consumption) for
embedded systems:

— sensor fusion & interpretation
* Accelerometers, grid based approaches

— telecommunication
* PN acquisition
 Decoding
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Architecture for demanding
applications

* MicroBayes will lead to the making of a new
type of programmable computer that can
proactively interpret from large amount of
noisy data with a good energy efficiency.

= Patents (architecture — Compilation )

= Stochastic machine kit
= Local collaboration Xerox-CEA-ProbaYes
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Dissemination

Scientific Paper and conferences
— Mathematics

— Computer science

* ICC CC: cognitive computing
Cognitive computing - big data - brain inspired computation

— Robotics
* |ROS: robotics

special issue : Special Issue on Unconventional computing for Bayesian
inference

— Signal audio
* |EEE Transactions on Speech, Audio and Language Processing
* EURASIP Journal on Advances in Signal Processing

— Micro electronics
* Async
* DATE: Architecture design
Architectural and Microarchitectural Design : power and energy efficient
architectures
e HPCA: architecture system
Architectures for emerging technology and applications
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MicroBayes

Four multi-disciplinary Labs
One PhD
One PostDoc

One prototype of a programmable Stochastic
Machine

Two representative demos
Three scientific challenges
— Architectures for stochastic machines

— New inference algorithm
— Difficult inference problems




The future Bayesian Valley ?
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